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We present the results of a combined theoretical and experimental study of the
stability of a uniformly stratified fluid bounded by a sidewall moving vertically with
constant velocity. This arrangement is perhaps the simplest in which boundary effects
can drive instability and, potentially, layering in a stratified fluid. Our investigations
reveal that for a given stratification and diffusivity of the stratifying agent, the sidewall
boundary-layer flow becomes linearly unstable when the wall velocity exceeds a critical
value. The onset of instability is clearly observed in the experiments, and there is
good quantitative agreement with some predictions of the linear stability analysis.

1. Introduction
Flows in which vertical fluid motion induced at a sidewall is opposed by a stable

ambient density stratification are present in a variety of geophysical and industrial
systems (Turner 1985). Examples that have been studied in a laboratory setting
include: heating or cooling of salt-stratifications (Thorpe 1969; Hart 1971; Huppert &
Turner 1980); sidewall heating of polydisperse suspensions (Mendenhall & Mason,
1923); suspensions settling near an inclined wall in the presence of a density gradient
(Peacock, Blanchette & Bush 2005); and double-diffusive systems in the presence of
an inclined boundary (Linden & Weber 1977). A motivation for studying such a wide
variety of mechanisms is their capacity to generate horizontal layers, which greatly
influence mixing and transport.

Here, we concern ourselves with arguably the simplest mechanism by which
instability can arise via sidewall forcing in a stratified system: a vertically-moving
no-slip sidewall. In such a system, fluid is dragged vertically in a boundary layer
adjacent to the moving sidewall, and this fluid motion is opposed by the ambient
stratification. This scenario may arise in dip-coating processes, for example, where the
thickness and uniformity of the coating-layer may be sensitive to conditions in the
liquid bath (Weinstein & Ruschak 2004). The transient evolution in a stratified tank
where an inclined sidewall is impulsively started was described by Standing (1971),
and the related case of the stability near an oscillating vertical boundary in a stratified
fluid has been investigated by Robinson & McEwan (1975); the present study may
be considered as the zero-frequency limit of this regime.

In § 2, we obtain a solution for steady boundary-layer flow and discuss its
characteristics. The stability analysis of this base flow profile is detailed in § 3,
followed by the corresponding numerical results in § 4. Experimental details and
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Figure 1. An infinitely tall container of width L with a stationary sidewall at x̄ = L/2 and a
sidewall moving vertically with velocity vb at x̄ = −L/2. In the absence of any sidewall motion
a density stratification ρ̄i(ȳ) is present: (x̄,ȳ) are the cartesian coordinates and (ū,v̄) are the
velocity components.

results are then presented in § 5, followed by a discussion and conclusions in §§ 6 and
7, respectively.

2. Steady flow
To model fluid motion for the configuration shown in figure 1, we use the Boussinesq

approximation of the incompressible Navier–Stokes equations,

∇ · u = 0,
Du
Dt

= −∇p

ρ∗ + ν∇2u +
gρ

ρ∗ , (2.1)

in combination with the density transport equation,

Dρ

Dt
= κ∇2ρ. (2.2)

Here, u =(ū, v̄) is the (x̄, ȳ) velocity vector, p the pressure, ν the kinematic viscosity,
ρ the density, ρ∗ a representative density value, g the gravitational acceleration and κ

the diffusion coefficient of the stratifying agent. The boundary conditions are no-slip
for the velocity at the sidewalls and no diffusive flux through the insulating sidewalls:

u(−L/2, y) = vbŷ, u(L/2, y) = 0, ∂xρ(±L/2, y) = 0, (2.3)

where ŷ is a unit vertical vector.
We non-dimensionalize equations (2.1) and (2.2) using the container thickness L as

a length scale, a diffusive time scale L2/κ and a typical density variation Ldρi/dy,
where ρ̄i(ȳ) is the density stratification in the absence of sidewall motion. From this
emerge the Rayleigh (Ra), Prandtl (Pr) and Péclet (Pe) numbers,

Ra =

g

(
− 1

ρ∗
dρi

dȳ

)
L4

νκ
, P r =

ν

κ
, P e =

vbL

κ
,

which respectively distinguish the relative importance of buoyancy, viscosity and
inertia compared to diffusion. Unless otherwise stated, henceforth all quantities are
dimensionless.
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Figure 2. The steady vertical velocity profile v0 (a) and corresponding density disturbance ρ0

(b) for Rayleigh numbers ranging from 0 to 108. The dashed grey curves were obtained via
numerical simulations in a finite container.

We assume a steady unidirectional flow (u, v) = (0, v0(x)), p = p0(y), and a steady
density-profile comprising a constant gradient and a perturbation term, i.e. ρ = −y +
ρ0(x). These assumptions implicitly require zero net vertical flux of fluid, which is
perhaps the most relevant scenario for comparison with experiments in a finite-sized
container. The resulting system of equations is linear in the velocity and density, and
we therefore eliminate the density to obtain the governing steady-state equation

∂xxxxv0 + Rav0 = 0, (2.4)

with boundary conditions

v0

(
− 1

2

)
= Pe, v0

(
1
2

)
= 0, Ra∂xρ0

(
± 1

2

)
= ∂xxxv0

(
± 1

2

)
= 0. (2.5)

The general solution of (2.4) is

v0(x) = ex
√

2/d

(
c1 cos

(
x

√
2

d

)
+ c2 sin

(
x

√
2

d

))

+ e−x
√

2/d

(
c3 cos

(
x

√
2

d

)
+ c4 sin

(
x

√
2

d

))
, (2.6)

where d = Ra−1/4 is the boundary-layer thickness and the coefficients ci are set by the
boundary conditions (2.5). The density is then found by solving v0 = − (ρ0)xx .

Examples of velocity and density profiles for four different Rayleigh numbers
covering the range Ra =0 to Ra = 108 are shown in figures 2(a) and 2(b) respectively.
These profiles are found to agree with the long-time limit of the transient solution
obtained by Standing (1971). In the limit of vanishing background stratification, and
thus vanishing Rayleigh number, the requirement of a steady density profile enforces
a parabolic velocity profile with zero net volume-flux. The density profile at low
Rayleigh number shows a nearly antisymmetric perturbation, with an increase near
the moving boundary resulting from a balance of vertical advection and diffusion.
In the limit of large Rayleigh number, both the fluid motion and density variation
become confined to a boundary layer of thickness d . We can rationalize the thickness
of the boundary layer for steady flow by simultaneously balancing vertical advection
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of density with horizontal diffusion, and buoyancy forces with viscous dissipation:

vb

dρ̄i

dȳ
∼ κ

�ρ

d̄2
, g�ρ ∼ ρν

vb

d̄2
, (2.7)

where �ρ is an undetermined horizontal density variation across the boundary layer.
This simple scaling analysis reveals that d̄ = Ld =LRa−1/4, a result consistent with
the analytical result (2.6). The time scale to establish this flow is set by the viscous and
diffusive time scales across the boundary layer, which are d̄2/ν and d̄2/κ , respectively.

We investigated the influence of the right-hand wall by replacing the stationary
boundary condition at x = 1/2 with a downward velocity v = −Pe, and solving for a
steady flow. This yields a linear velocity profile in the limit of Ra → 0, also with zero
net volume-flux. For Ra � 104, the boundary-layer profile becomes nearly identical
to the case of a stationary sidewall at x = 1/2. Since the experiments described in
§ 5 were conducted at high Rayleigh number (Ra ∼ 1012), we reasonably expect that
the stability of our system will not be affected by the boundary condition at the
right-hand wall. We also verified that the finite vertical extent of a container does
not significantly affect the boundary layer flow, provided the container is much larger
than the boundary layer. To confirm this we performed numerical simulations of a
container with equal height and width, at Ra = 108. Except in boundary-layer regions
adjacent to the upper and lower boundaries of the container, the velocity and density
profiles were found to closely match the theoretical profile (2.6), as shown in figure 2.

3. Linear stability analysis
The boundary-layer flow induced by a moving sidewall will be unstable when a

random horizontally displaced perturbation, of typical size d̄ and density difference
�ρ, accelerates sufficiently before diffusion can re-establish the steady-state profile.
Balancing the buoyancy of the perturbation with viscous forces yields a settling time
scale ts ∼ ρν/d̄g�ρ ∼ d̄/vb; while the diffusive time scale is td ∼ d̄2/κ ∼ Pr1/2/N , where
N = (g(1/ρ∗)dρ̄i/dy)1/2 is the Brunt–Väisälä frequency. A simple scaling analysis
therefore predicts that instability occurs when td > ts , and thus

vb > κ/d̄. (3.1)

We therefore anticipate that the critical wall velocity for instability will depend only
on the diffusion constant and boundary layer thickness.

Using the methods described by Finlayson (1972) and following Paliwal & Chen
(1979), we consider perturbations of the steady state (2.6). We introduce a
streamfunction ψ such that ∂xψ = −v and ∂yψ = u, and consider the perturbed state
ψ = ψ0+ψ ′ with corresponding density ρ = ρ0+ρ ′. Assuming perturbations of the form

ψ ′ = ψ ′(x) exp(iαy + σ t), ρ ′ = ρ ′(x) exp(iαy + σ t), (3.2)

we obtain the linearized system:

0 = − σ

P r
(∂xxψ

′ − α2ψ ′) − iα

P r
(v0(∂xxψ

′ − α2ψ ′) − ψ ′∂xxv0)

+ (∂xxxxψ
′ − 2α2∂xxψ

′ + α4ψ ′) − Ra ∂xρ
′, (3.3)

0 = −σρ ′ + (∂xxρ
′ − α2ρ ′) + iαψ ′∂xρ0 − iαv0ρ

′ + ∂xψ
′. (3.4)

The boundary conditions on the perturbations are no-slip and no density flux:

ψ ′ = ∂xψ
′ = ∂xρ

′ = 0 at x = ± 1
2
. (3.5)
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We note that perturbations in the third dimension (depth) may also arise, but as
a first step toward understanding the stability of this system we proceed with the
two-dimensional analysis.

We solve the eigenvalue problem (3.3)–(3.4) and determine for which values of
α, Pe, Pr and Ra the real part of σ , Re(σ ), is positive, corresponding to growing
instabilities. To do so, we first expand the perturbations in a series of functions of a
known form:

ψ ′(x) =

∞∑
n=1

anψ
n(x), ρ ′(x) =

∞∑
n=1

bnρ
n(x),

where the functions ψn(x) and ρn(x) are chosen to satisfy the homogeneous boundary
conditions (3.5), to obey an eigenvalue problem of the form ∂xxxxψ = λψ , and to
form complete orthogonal sets. The functions ρn are sines and cosines, while the ψn

are combinations of hyperbolic and trigonometric functions, both with frequencies
increasing with n. The Galerkin method is used to project equations (3.3) and (3.4)
onto the basis functions ψn and ρn, respectively, each equation being integrated from
x = −1/2 to x =1/2 to yield an algebraic equation for the coefficients an and bn. To
solve for these coefficients we truncate the infinite system, keeping only the first N

terms. Thus, we obtain a system of equations of the form (A − σB)x = 0, where x is
a vector containing the coefficients an and bn. To find unstable, non-trivial solutions,
we solve for eigenvalues, σ , with Re(σ ) > 0.

4. Numerical results
We consider Rayleigh numbers in the range 103–108 for two different Prandtl

numbers, corresponding to salt-water (Pr = 600) and heat-water (Pr = 7) systems. For
given Rayleigh and Prandtl numbers we have calculated the critical Péclet number,
Pec, above which the system is unstable. The number of basis functions used, N ,
always exceeded 24, and care was taken to verify that the results did not vary by
more than 1% as N was further increased; larger values of Ra required N as large as
72. The numerous integrals resulting from the projection of the basis functions onto
themselves were also evaluated numerically, and again the degree of accuracy was
verified to have a less than 1 % effect on the results. Moreover, results obtained using
the density and velocity profiles obtained numerically in a finite container changed
the computed Pec by only 4 %.

A critical Péclet number above which instabilities develop exists for the entire range
of Ra considered, as shown in figure 3(a). For Ra � 103 and Pr= 7, Pec is on the
order of 104 or larger, in which case finite-amplitude shear-induced instabilities are
possible as the Reynolds number (Re =Pe/P r) is greater than 103; such instabilities
are not detected by a linear stability analysis (Grossmann 2000). As Ra increases,
a minimum value of Pec ≈ 800 is reached at Ra ≈ 80 000 for both Prandtl numbers
before rising again with increasing Rayleigh number (note that figure 3a shows
Pec/Ra1/4, rather than Pec). There are some abrupt changes in Pec for Ra �
104, which are associated with different eigenmodes becoming unstable. These are

manifest as corresponding abrupt variations of the instability frequency, Im(σc), and
the critical wavelength, αc, in figures 3(b) and 3(c), respectively. Such behaviour is
not uncommon; double-diffusive systems, for example, exhibit non-monotonically
varying critical numbers as the most-unstable mode varies with the Rayleigh number
(Thangam, Zebib & Chen 1981). Despite the sharp change in wavenumber and
frequency, however, there is little variation in the horizontal form of the different
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Figure 3. Dependence on the Rayleigh number of (a) the critical Péclet number, Pec , (b) the
oscillation frequency Im(σc) and (c) the wavenumber, αc , of the most-unstable mode. All plots
show results obtained for heat-water (Pr= 7) and salt-water (Pr = 600) systems. Points on the
far right were obtained in the limit Ra → ∞ as described in § 6.

eigenfunctions. As Ra increases above 105, Pec increases as Ra1/4. In this limit, the
stability of the system is independent of the tube width L, as motion is confined to
a thin boundary layer near the wall and is unaffected by the presence of a far away
boundary.

The variation of Im(σc) with Ra is presented in figure 3(b). This quantity is always
positive, and the instability is therefore a travelling wave propagating in the opposite
direction to the moving boundary. As the Rayleigh number becomes large, Im(σc)
scales as Ra1/2; the frequency of instability is therefore κ/d̄2. The most-unstable
wavelength at the onset of instability, αc is plotted as a function of Ra in figure 3(c).
For Ra > 105, αc scales as Ra−1/4 and the multiplicative factor relating them is order
1 for both Prandtl numbers. The scale of the instability is thus on the order of the
boundary layer thickness.

The numerical results show that for Ra > 105 the relevant length scale to consider
is not the tank width L but the boundary-layer width d̄ . We therefore consider the
limit L/d̄ → ∞, in which the previously defined Rayleigh number also tends to
infinity. Non-dimensionalizing the governing equations using d̄ rather than L, the
Rayleigh and Péclet numbers are Ra∞ = 1 and Pe∞ = vbd̄/κ . In this limit, a critical
Péclet number exists for 7 � Pr � 600. When Pr > 100, the critical Péclet number
for instability is Pe∞c ≈ 43, and the critical boundary velocity is therefore

vb ≈ 43κ/d̄, (4.1)

consistent with the prediction of our scaling argument (3.1). The corresponding critical
wavenumber is α∞c ≈ 0.65, giving a critical wavelength

λc = (2π/αc)d̄ ≈ (2π/0.65)d̄ ≈ 9.4d̄. (4.2)

The frequency of the most unstable mode is ωc = Im(σ∞c) ≈ 1.9, corresponding to a
period

T = (2π/1.9)d̄ 2/κ ≈ 3.3d̄ 2/κ. (4.3)

For Pr = 7, appropriate to heat-water systems, Pe∞c ≈ 14, and α∞c ≈ 0.2, while Im(σ∞c)
is essentially unchanged. We note that these results repeat the scaling obtained for
105 < Ra < 108, in which case it can reasonably be assumed that this behaviour
persists in the range 108 < Ra < ∞.
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Figure 4. Schematic of the experimental apparatus. A thin Mylar conveyer-belt, kept taught
by two Teflon-coated surfaces, is mounted on a pair of rollers. The top roller is driven by
a microstepper motor and the consequent vertical motion of the Mylar belt generates an
adjacent boundary-layer flow in the ambient stratification. The onset of instability for this flow
is studied using Synthetic Schlieren.

5. Experiments
5.1. Apparatus

A schematic of the experimental arrangement is shown in figure 4. An acrylic tank
40 cm high with a 40 cm × 30 cm base was filled with linearly stratified salt-water using
the double-bucket method (Oster 1965). The density gradient, measured using both
density floats and selective withdrawal, covered the range −23 kgm−4 to −517 kg m−4.
Vertically-moving sidewalls were achieved using a thin 28.5-cm-wide Mylar conveyor-
belt standing vertically in the middle of the tank. To isolate it both mechanically and
thermally from the surroundings, the Mylar conveyor-belt was looped around two
rubber rollers. The outside of the conveyor-belt was open to the stratification, whereas
the inside lay flat against Teflon-coated surfaces, which kept the conveyor-belt taught
whilst allowing smooth motion. The motion of the Mylar belt, which was upwards
in one half of the tank and downwards in the other, was driven by a microstepper
motor. Belt velocities were set in the range 0.50–2.60 ± 0.01 mm s−1, and both the
magnitude and steadiness of this motion were verified by analysing movies of the belt
motion taken using a CCD camera. The water temperature was constant throughout
the tank to within 0.2 ◦C.

The onset of instability was detected using the Synthetic Schlieren technique
(Sutherland et al. 1999). A random pattern of dots backlit by a uniform light sheet was
placed 30 cm behind the back wall of the tank. A 50-mm-square region of the random
pattern that contained both the up and down moving walls was viewed horizontally
through the tank using a 1024 × 1264 pixel CCD camera, positioned 3 m from the
front wall of the tank. Instability of the boundary-layer flow adjacent to the conveyor-
belt generated perturbations of the density gradient field (and thus refractive-index
gradient field), which in turn produced apparent distortions of images of the random
pattern that could be detected using the software Digiflow. A cross-correlation search
window of 19 × 19 pixels with 3-pixel overlap gave an experimental resolution of
0.75 mm, with apparent displacements of 0.04 mm (1 pixel) readily detectable. In each
case, the reference image used for the Synthetic Schlieren processing was obtained
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Figure 5. (a) Perturbations adjacent to the downward-moving boundary, which is on the
right-hand side of each image at x =0, for a background stratification of −274 kg m−4

(Ra= 2.2 × 1012). Wall velocities are 1.34mm s−1 (left), 1.49 mm s−1 (centre) and 1.55 mm s−1

(right), corresponding to Pe = 1.68, 1.86 and 1.94 ×105, respectively. (b) Time series of the
vertical density-gradient perturbation for a wall velocity of 1.55 mm s−1 obtained using a
vertical cut at x = −2.5 mm. The colourmap indicates the amplitude of the perturbation to the
ambient vertical density gradient in kgm−4.

with the steady-state flow present, as the optical distortions generated by the steady-
state flow distorted the view of the original mask so strongly as to prevent successful
cross-correlation.

In a typical experiment, a stratification was established and the conveyor-belt set
in motion at a velocity well below the onset of instability. In this regime, a vertically
uniform optical distortion could be observed very close (∼1 mm) to the moving walls,
corresponding to the unidirectional boundary layer. The velocity of the conveyor-belt
was then increased in steps of 0.05 mms−1 and the system was left to stand for 10
minutes after each adjustment, to allow reasonable time for an instability to initiate
and spread across the width of the moving boundary. Several trial experiments were
left running for much longer between adjustments (∼1 hour) without any change in
the results. This process was repeated until an instability, which was manifest as a
spatially periodic structure, could be recognized. The onset of instability was then
checked for hysteresis by increasing the conveyor-belt velocity to 0.3 mm s−1 above
critical and systematically reducing the velocity in steps of 0.05 mms−1. No evidence
of hysteresis could be found, and the same critical value was determined whether
the critical velocity was approached from above or below. The experiments were
repeated for a range of stratifications, and in several cases repeated months later
(which required rebuilding the experiment from scratch), to confirm repeatability, and
to study some aspects of the instability in more detail.

5.2. Results

A typical set of experimental images showing the transition from a stable to
an unstable boundary-layer flow, obtained using a background stratification of
−274 kgm−4, is presented in figure 5. For these images, the belt, located on the right-
hand side of the image, is moving downwards, and the sidewall of the experimental
tank is far (>150 mm) beyond the left-hand border. The vertical extent of the images
presented in figure 5 is 4.5 cm, which was located at the midheight of the tank.
A few small perturbations are visible in the immediate vicinity of the boundary in
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Figure 6. Experimental data for the onset of instability, plotted as log10(Pec) vs log10(Ra). A
best-fit line of slope 0.26 is drawn through the data. The results labelled ‘Data 2’ were taken
several months after ‘Data 1’.

the left-hand image, for which vb = 1.34 mm s−1. These perturbations displayed no
coherence over time periods even as short as one quarter of a second, however,
and were therefore considered to be noise. For vb = 1.49 mm s−1, the first clear
evidence of instability emerged, as demonstrated by the middle image of figure 5(a). A
periodic structure can readily be observed, and the wavelength was determined from
several such images taken at different times to be 4.7 ± 0.2 mm. The characteristic
density gradient perturbation was 3 kgm−4, on the order of 1 % of the background
stratification. Above this critical wall velocity, the periodic structure became even
more apparent. This is evident in the right-most image of figure 5(a), for which
vb = 1.55 mm s−1. The perturbations are noticeably stronger at this supercritical wall
velocity, and the wavelength has increased to 5.3 ±0.4 mm. The periodic structure
extends several millimetres from the moving boundary into the ambient, and this did
not noticeably change if left for several hours, implying that nonlinear effects were
saturating its growth. We confirmed that the behaviour of the system was the same
throughout the central 20 cm of the tank. There was no evidence of any end effects
as cells evolved uniformly across the entire domain of investigation (as opposed to
obvious sequential growth from the top or bottom) and appeared simultaneously on
both the upward and downwards moving walls.

The periodic structure was not stationary at onset, but travelled in the opposite
direction to the adjacent moving boundary. This is demonstrated by the image in
figure 5(b), which was generated by plotting the temporal evolution of the density-
gradient perturbation for a vertical cut at x = −2.5 mm in the right-most image
of figure 5(a). The periodic structure moves upwards, in the direction opposite to
that of the neighbouring boundary which is moving downwards. The frequency of
the instability was 0.21 ± 0.1 Hz at onset (which was close to the natural buoyancy
frequency of 0.26 Hz for this experiment) and did not change noticeably as vb was
increased through the critical value. The phenomenon was mirrored in the other half
of the experimental tank, where the instability had the same wavelength and moved
downwards with the same velocity adjacent to the upwards moving wall.

We determined the critical wall velocity at the onset of instability for a range
of linear stratifications, and the results are presented in figure 6, in which we plot
the critical Péclet number, Pec, as a function of the Rayleigh number, Ra (based
on the half-width of our experimental tank). The results were highly repeatable, as
demonstrated by the second set of data points (Data 2), which were taken several
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months after the first experimental results (Data 1). A best-fit line to the data in
this log–log plot gives a slope of 0.26 ± 0.04, agreeing with the 1

4
power scaling

predicted by the linear stability analysis. For the repeated experiments (Data 2),
we carefully measured the wavelength and frequency of the instability at onset.
The wavelengths were λa = 7.6 ± 0.3 mm and λb = 4.7 ± 0.2 mm for density gradients
of −43 kg m−4 and −274 kgm−4, respectively; and the frequencies at onset were
ωa = 0.09 Hz and ωb = 0.21 Hz, respectively. These values agree well with the predicted
scaling of the instability wavelength: λa/λb = 1.62 compared to (43/274)−1/4 = 1.59;
and ωa/ωb = 0.43 compared to (43/274)1/2 = 0.40.

No coherent macroscale layer structure was ever observed to develop. Once the
instability appeared at the critical wall velocity it soon became saturated, and never
extended beyond a few millimetres into the ambient, even if the critical wall velocity
was maintained for several hours. Nor was there any clear evidence of splitting or
merging of the observed periodic structure as the wall velocity was increased above
critical. Rather, the spatially periodic structure became increasingly incoherent and
intermittent. Some larger-scale features, perhaps a secondary instability, were observed
to develop and decay within the boundary layer, but not in any organized manner.

6. Discussion
Our experiments clearly identify the onset of an instability in a density stratified

fluid due to a vertically moving sidewall. Consistent with the predictions of linear

theory, Pec scales as Ra
1
4 , αc scales as Ra− 1

4 , and at onset the instability is oscillatory
and propagates in the opposite direction to the adjacent moving boundary with a

frequency Im(σc) that scales as Ra
1
2 .

Whilst the scalings for the physical quantities measured are the same, the absolute
values, are different. Linear theory predicts Pec ≈ C1Ra1/4, with C1 ≈ 43, whereas
experimental data yield C1 ≈ 127. The critical wall velocities detected in the experiment
were therefore nearly 3 times larger than those predicted. Linear theory also predicts
αc ≈ 9.4d̄ , which, using ν = 10−6 m2 s−1 and κ =1.5 × 10−9 m2 s−1, corresponds to 1.2–
2.7 mm for our experiments. We measured the instability wavelength to be significantly
larger; for example, 7.6 mm for a density gradient of −43 kgm−4. Finally, the observed
frequency was significantly higher than that predicted (and close to the natural
buoyancy frequency of the stratification); for example, 0.21 Hz compared to the
predicted value of 0.02 Hz for a density gradient of −274 kgm−4.

A possible reason for the disagreement between experiment and theory is that
the experimental apparatus was simply not sensitive enough to record the true
onset of instability. Our experimental arrangement, however, could reliably detect
perturbations that were less than 1 % of the background stratification for the strongest
density gradients, and it is difficult to envisage readily improving upon this. The
resolution of our experiment, 0.75 mm, was comparable to the predicted wavelength.
To verify that indeed our resolution was sufficient, we performed test experiments
with the camera more closely zoomed in, increasing the resolution to 0.25 mm at the
expense of a slightly weaker optical signal. This made no difference to our results.
To ensure that we were allowing sufficient time for an instability to develop, we left
the system running for several hours in weakly subcritical states, but no periodic
structure evolved.

To further understand the discrepancy between experiment and theory, we
numerically investigated the instability as Pe is increased above the critical value.
We considered the limit L/d̄ → ∞, which is the regime of the experiments. Figure 7(a)
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Figure 7. (a) Most-unstable wavenumber, α∞, and growth rate of the instability, σ∞, for Péclet
numbers exceeding the critical value computed through linear stability analysis, Pe∞c = 43.
Computations were performed in the infinite Rayleigh number limit and with Pr = 600. Results
are non-dimensionalized with the boundary-layer thickness L ∼ d̄ and the diffusive time scale

t ∼ d̄2/κ . (b) and (c) Density perturbation eigenmodes for α = 0.68 and α = 0.14, respectively,
at Pe∞ = 110. Lengths are expressed in terms of d̄ and the computational domain had width
60d̄ .

shows the dependence, in this limit, of the most-unstable wavenumber, α∞, growth
rate of the instability, Re(σ∞), and oscillation frequency, Im(σ∞), on the Péclet
number. When Pe∞ = vbd̄/κ exceeds the critical value by approximately 50, the
most-unstable wavenumber decreases sharply to 0.14. Moreover, the growth rate of
the instability increases by an order of magnitude, and the oscillation frequency also
increases, albeit more smoothly. The theoretical critical Péclet number corresponding
to this second instability is approximately 95, compared to an observed value of
127. The predicted wavelengths are approximately 10.4 mm and 6.6 mm for density
gradients of −43 kg m−4 and −274 kg m−4, respectively, which compare favourably
with our observed values of 7.6 mm and 4.3 mm. Finally, the theoretical oscillation
frequency becomes 0.11 Hz and 0.25 Hz, respectively, also in good agreement with
our observations of 0.09 Hz and 0.21 Hz.

To gain further insight, we also investigated the spatial structure of these linear
instabilities to see if this could distinguish which mode was excited. The density
perturbations for eigenmodes with wavenumbers α = 0.68, and α = 0.14 in the limit
of L/d̄ → ∞ are presented in figures 7(b) and 7(c), respectively. In contrast to our
experimental observations, both eigenmodes display large variations near the centre
of domain, and bear little resemblance to the observed structures in figure 5(a). It
is noteworthy that the eigenmode corresponding to α = 0.14, figure 7(c), shows a
local maximum near x = 2d̄ , in contrast to the eigenmode α = 0.68 which shows no
horizontal structure of a scale comparable to that of the boundary layer.

One possibility, therefore, is that we observed a manifestation of the larger-scale
stronger instability that occurs when Pe − Pe∞c > 50, as it is more conducive to
experimental observation evolving on a time scale of minutes rather than tens of
minutes or hours, and therefore being more robust in the face of experimental
noise. The horizontal structure of the instability we observed, however, was not
determined by a linear instability, which suggests that nonlinear effects, which are
largest near the boundary layer, or perhaps three-dimensionality, play an important
role in determining the structure of the instability.
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7. Conclusion
We have demonstrated that an instability occurs if a vertical sidewall bounding

a stratified fluid is moved up or down with sufficient velocity. In the experiments,
conducted using a salt-water stratification, scalings predicted by linear theory for the
critical wall velocity, wavelength and frequency of the instability as a function of
the background stratification were reliably reproduced. Although the absolute values
of these parameters were larger than predicted, the level of agreement obtained is
reasonable given the inherent limitations of linear theory, and is comparable to that
obtained for the onset of instability in analogous double-diffusive systems (Tanny &
Tsinober 1988; Kerr 2000). No macroscale layering was observed to result from the
detected instability.

In conclusion, we note that the physical arrangement we have studied corresponds to
vertical Couette flow between parallel plates (Dauchot & Daviaud 1995). The analysis
predicts that for a 10-cm-wide system, a vertical temperature gradient as small as
0.05 ◦Cm−1 would have a critical Péclet number of Pec ≈ 1000. The corresponding
Reynolds number, vbL/ν = Re ≈ 150, would then be below the threshold for nonlinear
instabilities associated with the transition to turbulence. The very small scale of
the instability may mean it would go unnoticed, but still provide finite-amplitude
perturbations capable of triggering nonlinear instabilities.
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